and the basic symptom approach currently prevail. Both approaches have been developed and so far evaluated predominately on adult or mixed, adult-adolescent, samples with little consideration of potential development-mental peculiarities of minors. The same is true for research on additional predictors, such as neurocognitive deficits that have been excessively stud-
ied. Four neuropsychological domains - verbal fluency, processing speed, verbal and spatial working memory - were repeatedly reported to be impaired already in at-risk states and to enhance prediction of psychosis. The aim of this pilot was to investigate if these neuropsychological deficits can also be found in a purely adolescent at-risk sample and are specific to it.

Methods: The pilot was conducted on six subjects identified as at-risk according to the UHR and/or basic symptom criteria (AtRisk; mean age 16.71, 3 male) and six clinically controls with other non-psychotic psychi-
atric diagnosis (ClinS; mean age 16.10, 1 male). The four neuropsychological domains were assessed by a verbal fluency test, the Digit-Symbol Test (DST) and the Trail Making Test (TMT) A and B, the German version of Auditory Verbal Learning Test (AVLT) and the Subject Ordered Pointing Task (SOPT).

To control for general effects of IQ, a measure of verbal IQ, the “Peabody Picture Vocabulary Test” (PPVT), was assessed. For the small sample sizes and lack of power, effect size (r, phi) rather than level of significance was the guiding criterion.

Results: The two groups did not differ in age and gender, but verbal IQ was slightly higher in AtRisk (r=0.44). Compared to ClinS, AtRisk performed worse in all tests (r=0.23-0.78) but the DST (r=0.03) and exhibited more frequently deficits according to the norms provided for the tests (AVLT (learning capacity): phi=0.45; AVLT (delayed recall): phi=0.45; verbal fluency: phi=0.56; DST: phi=0.30 TMT B: phi=0.51; SOPT: phi=0.71). Generally, deficits in spatial working memory (SOPT) discriminated best (r=0.38; diagnostic odds ratio=2.0), and SOPT was impaired in 4 of 6 AtRisk but none of the ClinS. Verbal fluency deficits discriminated worst although the effect sizes were nearly moderate (r=0.23; diagnostic odds ratio=2.0).

Discussion: Deficits in processing speed, verbal memory, verbal fluency and spatial working memory that have repeatedly demonstrated in (predom-
inately) adult at-risk samples were replicated in this purely adolescents at-risk for psychosis. Thereby, spatial working memory deficits were most specific. This gives first support to the notion that the same neurocognitive deficits, which are promising complementary predictors in adult samples, could be used in adolescent samples. However, discriminative validity of these deficits need further support in larger samples of children and adolescents; the predictive validity will have to be studied in long-term follow-ups.

Poster #158

FLEXIBLE OBJECT WORKING MEMORY CAPACITY IN SCHIZOPHRENIA AND HEALTHY PARTICIPANTS IN A SELF-ORDER TASK

Heathman S. Nichols1, Jared X. Van Snellenberg2,3, Edward E. Smith2,4, Sohee Park1

1Vanderbilt University Department of Psychology, Nashville, Tennessee, USA; 2Columbia University Department of Psychology, New York City, New York, USA; 3Columbia University Department of Psychiatry, New York City, New York, USA; 4New York State Psychiatric Institute, Division of Cognitive Neuroscience, New York City, New York, USA

Background: The ability to encode and maintain the order in which stimu-
lus events occur is crucial for appropriate interactions with the world. Past research indicates that schizophrenia patients have difficulty in performing serial order WM tasks, and that they reach a capacity limit at a lower level of difficulty than healthy participants. However, there is an ongoing debate in cognitive psychology on the nature of WM capacity, which may be influenced by multiple factors. We examined the roles of stimulus type and strategy in self-order WM with an eye tracker.

Methods: Outpatients with schizophrenia and demographically matched healthy participants were asked to scan an array of 8 stimuli and to select each stimulus exactly once in any order. After each selection, the spatial location of the stimuli was randomly re-arranged. Thus, this task requires participants to maintain in WM which stimuli were already selected before choosing the next one. If no stimulus was selected within 7s or if they made an error, one was selected for them. There were two stimulus types. An array contained either 8 abstract shapes or 8 faces. There were 12 sets of faces and shapes. Each set was presented twice for a total of 24 blocks and 192 trials. An eye tracker was used to monitor scan paths during the task to observe strategies. Cowan’s K was used to estimate the WM capacity. Symptoms were assessed with SANS, SAPS and BPRS.

Results: Schizophrenia patients were impaired compared with healthy con-
trols on the self-order WM task as measured by accuracy (percent correct) and Cowan’s K. Interestingly, K was influenced by the stimulus type: K was larger for faces than shapes for both groups. Thus, it appears that humans can hold more faces than shapes in working memory. The severity of both positive and negative symptoms was negatively correlated with K. Patients who showed a larger benefit for faces tended to be less symptomatic.

Discussion: These results suggest that WM capacity is somewhat flexible depending on the stimulus type, and it may be larger for ecologically impor-
tant stimuli such as faces even in schizophrenia patients with reduced WM. The observed increased capacity for faces may be explained by more readily available verbal labeling and/or our familiarity and expertise for faces com-
pared to abstract shapes. Patients whose WM capacity benefited the most from face stimuli had fewer symptoms than those who did not. In other words, those patients who are not sensitive to socially relevant stimuli such
as faces and do not attend to them are much more symptomatic. Lastly, even though WM capacity appears to be somewhat flexible, the group difference remains constant regardless of the stimulus type, indicating the stable and permanent nature of WM deficits in schizophrenia.

Poster #159

EARLY VISUAL PROCESSING IN EARLY AND ADULT ONSET SCHIZOPHRENIA: A SOURCE ANALYSIS OF THE N80 VISUAL EVOKED POTENTIAL

Daniel Nunez1,2, Andre Rupp3, Matthias Weisbrod4,6, Rikke Oellers-Ax1,5,6
1University of Talca Talca, Maule, Chile; 2Psychiatry Department, Centre for Psychosocial Medicine Heidelberg, Baden Württemberg, Germany; 3Section of Biomagnetism, Department of Neurology Heidelberg, Baden Württemberg, Germany; 4Klinikum Karlsbad-Langensteinbach Langensteinbach, Baden Württemberg, Germany; 5Department of Child and Adolescent Psychiatry Heidelberg, Baden Württemberg, Germany

Background: Deficits in early visual processing are a core feature of schizophrenia. Both magnocellular (M) and parvocellular (P) pathways are implied in these impairments. The influence of the faster M on P pathway allows highlighting of relevant information (M-priming). An M dysfunction (magnocellular disadvantage) and disturbed interactions between both pathways has been hypothesized for schizophrenia. Visual evoked potentials (VEPs) studies provide supporting evidence, but further research is required to disentangle the reciprocal influences existing between M and P pathways. Studying patients with different ages of illness onset may be a promising approach allowing the integration of both information processing models and neurodevelopmental models of schizophrenia. The current study analyzed the source waveforms of the N80 component elicited by VEPs in subjects with early and adult schizophrenia onset (EOS and AOS respectively). Because of the M-priming deficit, we expected to find prolonged latencies and/or reduced amplitudes in patients relative to healthy controls in mixed M/P conditions and normal responses to isolated M or P conditions. Since EOS goes along with higher probability of a “first hit” during the early stages of visual system maturation, and because of the higher vulnerability of the M pathway to the brain developmental changes during adolescence, the deficit would be greater in EOS compared to AOS.

Methods: 40 schizophrenia patients (EOS=19; AOS=21) were compared to age and gender-matched healthy controls (early onset controls (EOC=19); adult onset controls (AOC=21). Nine stimulating conditions were used to isolate M and P pathways. N80 generators were estimated using a method of source localization, Brain Electrical Source Analysis software (BESA). Experimental conditions were pooled into four categories according to their stimulating properties. Hypotheses were tested through the bootstrap resampling procedure, randomly repeated 1,000 times to compute mean values and critical t-intervals for both latencies and amplitudes in a 60–120ms latency range. Differences between groups were significant (based on the 5% level) when the mean plus the t-critical interval of one group did not touch the other mean group.

Results: The N80 component was represented by a single dipole located in the primary visual cortex. Bootstrap analysis yielded significant amplitude reductions in response to mixed M/P conditions and normal amplitudes in response to P and M-biased condition in EOS compared to controls.

Discussion: Our results suggest the M-priming deficit as a possible mechanism underlying the N80 generation impairment observed only in EOS. This specificity might reflect that brain maturational abnormalities occurring around or prior to the illness onset are more severe in EOS compared to AOS, with a pattern of progression indicating a movement from parietal to frontal regions, and increasing normalized parietal development levels when patients approach adulthood. In addition, our findings might reflect the long-lasting maturation of the M pathway, whose vulnerability to the brain insults occurring in EOS would be higher than the ventral stream.

Poster #160

A CLUSTER APPROACH FOR DETERMINING GROUPS OF PATIENTS WITH FIRST PSYCHOTIC EPISODE AND THEIR RELATIONSHIP WITH SYMPTOMS, SOCIAL AND NEOUROPSYCHOLOGICAL FUNCTIONING

Susana Ochoa1, Judith Usall1, Elena Huerta-Ramos1, Montserrat Dolz2, Ana Barajas2, Iris Baiños3, Bernardo Sánchez2, Janina Carlson2, Alexandrina Foix1, Trinidad Pelaez1, Marta Coromina1, Marta Pardo2
1Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat (Barcelona), CIBERSAM Sant Boi de Llobregat, Barcelona, Spain; 2Hospital Infantil-de-juvenil Sant Joan de Déu, Esplugues de Llobregat (Barcelona), CIBERSAM Esplugues de Llobregat, Barcelona, Spain

Background: There are different profiles for patients with a first psychotic episode (FPE). The aim of our study was to identify specific groups of patients with an FPE based on: familial risk, obstetric complications, neurologic soft signs, premorbid functioning and gender. The secondary objective was to relate these groups of patients with symptoms, social functioning and cognitive variables.

Methods: A total of 62 consecutive patients with an FPE were recruited from Sant Joan de Déu adult and child and adolescent mental health services. The instruments used in the assessment consisted of: the premorbid adjustment scale (PAS), neurologic soft signs (NSS), obstetric complications (Lewis-Murray), familial risk (Andreasen), clinical variables (PANSS, ICG, GAF, SUMD), social variables (DAS-s, PARI) and cognitive performance (CPT, TMT, WAIS-WISC, TAVEC-TAVECI, Stroop). A k-means conglomerate analysis and Kruskal-Wallis comparisons between these clusters with clinical, social and neuropsychological variables were performed.

Results: Results indicated three clusters: one with presence of familial risk (N=30), a second group with higher presence of females (N=18) and a third group with more neurodevelopmental markers (N=14). Statistical differences in cognitive variables were found between groups: TMTB, memory, Stroop, vocabulary, digits and estimated IQ. There were no clinical or social variables between groups.

Discussion: Three patient profiles were identified based on pre-onset variables. The group with higher presence of females had the highest levels of cognitive functioning while the neurodevelopment group had the lowest. These different profiles require specific interventions.